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A B S T R A C T

Negative relationships play a crucial role in the diffusion of information across social networks. To explore this
phenomenon, we introduce a threshold model for information cascades in signed networks, which includes a
weighted parameter 𝛼 ∈ (−∞, 1] to represent the impact of negative links, causing decay or negative influence.
Using rigorous mean-field analysis, we identify the conditions that enable global cascades. Interestingly, we find
that negative 𝛼 results in the same cascade conditions as 𝛼 = 0. Furthermore, with negative 𝛼, the relationship
between average degree and cascade size forms a bell-shaped curve, leading to second-order phase transitions
at both low and high average degrees. These findings are consistent across random networks with Poisson and
scale-free degree distributions. Overall, this research provides a theoretical framework for understanding the
effects of negative connections on information diffusion in social networks, offering important insights into
cascade dynamics and practical strategies for managing information dissemination in real-world contexts.
1. Introduction

In the contemporary world, individuals traverse a maze of intricate
social relationships, facilitated by the pervasive presence of online plat-
forms and digital communication tools [1–3]. These social networks,
burgeoning from the intricate fabric of human societies, serve not only
as arenas for social interaction but also as indispensable conduits for
the rapid information diffusion, where ideas, opinions, and behaviors
cascade across global populations [4–7]. Consequently, comprehend-
ing the mechanisms underpinning information cascade within these
networks is imperative for predicting social trends and effectively
managing the information diffusion [8–10].

The diffusion process is shaped by myriad factors, including net-
work structure, content characteristics, user attributes, and relationship
strengths. Network topology, for instance, influences the speed and
reach of diffusion, with densely connected clusters fostering rapid dif-
fusion while sparse connections may impede diffusion [11–13]. Mean-
while, the nature of the information itself, whether it is emotionally
charged, true or false, or aligns with pre-existing beliefs, significantly
affects its likelihood of being shared and adopted [14–16]. More-
over, individual attributes play a pivotal role in shaping information
diffusion dynamics. Factors such as social influence, homophily, and
opinion leaders influence the spread of information, creating cascades
of adoption or resistance within the network [17–20]. Furthermore,
considering the strength of social relationships, threshold-based models
on weighted networks have been proposed to analyze information
cascade processes [21,22].
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Nevertheless, the type of social relationships can be diverse, en-
compassing not only positive bonds indicative of friendship or col-
laboration but also negative links stemming from rivalry or conflict
[23–26]. Conventional models of information diffusion often oversim-
plify this aspect, while signed networks, characterized by the coexis-
tence of positive and negative links, furnish an alternative framework
for comprehending information diffusion [27–29].

To gain a deeper understanding of the intricate interplay between
positive and negative relationships in information diffusion, our study
builds upon previous research by explicitly incorporating both types
of links into the model [30,31]. In contrast to the approach in [32],
which focuses on the complete obstruction of information cascades by
negative links, assuming that information propagates solely through
positive links, our research introduces a weighted parameter 𝛼 ∈
(−∞, 1]. This parameter allows us to modulate the influence of negative
links on information adoption. By adjusting 𝛼, we explore a wide range
of scenarios, from scenarios where information sources are completely
blocked along negative links to scenarios where both positive and
negative links are considered equally. This refined approach sheds
light on how mixed ties comprehensively influence the dynamics of
information cascades.

We designate a fraction of initially active seed nodes as focal
points for initiating cascading effects. By scrutinizing the activation
processes of nodes in response to both positive and negative links, we
aim to elucidate the underlying mechanisms that govern information
cascades in signed networks. Our model offers a versatile framework for
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Fig. 1. The depiction illustrates information cascades for different weighted parameters 𝛼 in a signed network with 𝑁 = 10, 𝜌0 = 0.1, and 𝜙 = 0.3. Dashed lines signify negative
inks, while solid lines denote positive links. Inactive states are represented by white circles, while active states are highlighted in red. The settings are as follows: (a) 𝛼 = −0.5;
b) 𝛼 = 0; (c) 𝛼 = 0.5; (d) 𝛼 = 1.
nalyzing cascade dynamics across diverse network topologies, initial
onditions and link strengths. It enables us to simulate information
iffusion through networks that realistically represent both supportive
nd adversarial relationships, thus providing a more accurate portrayal
f the intricate dynamics observed in real-world social networks.

. Model

We construct a random network of size 𝑁 , where the degree of each
ode, denoted by 𝑘, follows a distribution 𝑝𝑘 with an average degree
𝑘⟩. To develop a random signed network, we assign each link a sign:
ositive with probability 𝜂 ∈ [0, 1], and negative with probability 1− 𝜂.
nitially, a fraction 𝜌0 of seed nodes (i.e., seed size) are designated as
ctive, representing early adopters of information.

The transition of a node from an inactive to an active state is
overned by the condition
𝑚𝑝 + 𝛼𝑚𝑛

𝑘
> 𝜙, (1)

where 𝜙 ∈ [0, 1] is the threshold that determines when a node shifts
from being inactive to active. In this equation, 𝑚𝑝 denotes the number
of active nodes connected via positive links, and 𝑚𝑛 represents the
number of active nodes connected via negative links.

The parameter 𝛼 ∈ (−∞, 1] quantifies the influence of each active
node connected by a negative link on the activation of a given node
within the network. A positive 𝛼 implies that negative links have a
reduced effect on activation, while a negative 𝛼 suggests an inhibitory
effect of negative links on activation.

The information cascade process continues until no further nodes
can be activated. In our model, the primary focus is on the average
fraction of active nodes, referred to as the average cascade size 𝜌.

It is noteworthy that when 𝛼 = 1 (indicating equal weighting of
contributions from active nodes through both positive and negative
links) or 𝜂 = 1 (indicating that all links are positive), our model reduces
to the one proposed by [31].

Fig. 1 offers a visual depiction of the intricate dynamics of informa-
tion cascades within a signed network with size 𝑁 = 10, commencing
from a single seed node. Central to this understanding is the pivotal
role played by the weighted parameter 𝛼, which essentially determines
2

the degree to which negative links hinder the diffusion of activation
across the network. In case (a), where 𝛼 is set to −0.5, the negative
links exhibit a suppressive effect on the adoption of information. This
is reflected in the final cascade size, which amounts to 𝜌 = 3∕10 (0.3),
indicating that only a minority of nodes are activated. In contrast,
case (b) with 𝛼 = 0 indicating an absence of any influence exerted
by negative links. This leads to a slight increase in the cascade size,
with a final cascade size of 𝜌 = 4∕10 (0.4). As we transition to case (c),
characterized by 𝛼 = 0.5, we observe a more significant expansion in
the cascade. Here, the negative links begin to exhibit a lesser inhibitory
effect, enabling a broader diffusion of activation. Consequently, the
cascade culminates in a cascade size of 𝜌 = 7∕10 (0.7), indicating a
substantial increase in the number of activated nodes. Finally, in case
(d), where 𝛼 is set to 1, our model aligns with the seminal framework
introduced by [31]. Here, both positive and negative links contribute
equally to the activation process. This symmetry in link influence
leads to the maximization of the cascade, ultimately resulting in the
activation of all nodes and attaining a cascade size of 𝜌 = 1.

3. Results

3.1. The cascade size

The average cascade size 𝜌 can be derived using the following
expression

𝜌 =𝜌0 + (1 − 𝜌0)
∞
∑

𝑘=1
𝑝𝑘

𝑘
∑

𝑘𝑝=0

(

𝑘
𝑘𝑝

)

𝜂𝑘𝑝 (1 − 𝜂)𝑘−𝑘𝑝

×
𝑘𝑝
∑

𝑚𝑝=0

(

𝑘𝑝
𝑚𝑝

)

𝑞
𝑚𝑝
∞ (1 − 𝑞∞)𝑘𝑝−𝑚𝑝

×
𝑘−𝑘𝑝
∑

𝑚𝑛=0

(

𝑘 − 𝑘𝑝
𝑚𝑛

)

𝑞𝑚𝑛
∞ (1 − 𝑞∞)𝑘−𝑘𝑝−𝑚𝑛𝐹

(𝑚𝑝 + 𝛼𝑚𝑛

𝑘

)

,

(2)

where 𝑞∞ is the fixed point of the recursive equation

𝑞𝑛+1 = 𝜌0 + (1 − 𝜌0)𝐺(𝑞𝑛), (3)
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Fig. 2. The figure illustrates the cascade windows within the (𝜙, ⟨𝑘⟩) planes and explores the relationship between the average cascade size 𝜌 and the average degree ⟨𝑘⟩ for
different seed sizes 𝜌0. The network employs a Poisson degree distribution 𝑝𝑘 = 𝑒−⟨𝑘⟩⟨𝑘⟩𝑘

𝑘!
. Panels (A) and (C) depict 𝜌 color-coded and averaged over 103 realizations across varying

𝜙 and ⟨𝑘⟩. Here, 𝑁 = 104, 𝜂 = 0.3, 𝜌0 = 10−4, and two scenarios are considered: 𝛼 = 0.5 (Panel A) and 𝛼 = −0.5 (Panel C). The solid blue line delineates an analytical approximation
of the boundaries of global cascade windows. This line encloses the window where the condition outlined in Eq. (9) is satisfied. Panels (B) and (D) present the values of 𝜌 at
𝜙 = 0.1, derived from Eq. (2), represented by lines for 𝛼 = 0.5 (Panel B) and 𝛼 = −0.5 (Panel D) respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
with 𝑞0 = 𝜌0, and the nonlinear equation 𝐺 is defined by

𝐺(𝑞) =
∞
∑

𝑘=1

𝑘𝑝𝑘
⟨𝑘⟩

𝑘−1
∑

𝑘𝑝=0

(

𝑘 − 1
𝑘𝑝

)

𝜂𝑘𝑝 (1 − 𝜂)𝑘−1−𝑘𝑝
𝑘𝑝
∑

𝑚𝑝=0

(

𝑘𝑝
𝑚𝑝

)

𝑞𝑚𝑝 (1 − 𝑞)𝑘𝑝−𝑚𝑝

×
𝑘−1−𝑘𝑝
∑

𝑚𝑛=0

(

𝑘 − 1 − 𝑘𝑝
𝑚𝑛

)

𝑞𝑚𝑛 (1 − 𝑞)𝑘−1−𝑘𝑝−𝑚𝑛𝐹
(𝑚𝑝 + 𝛼𝑚𝑛

𝑘

)

.

(4)
Here 𝐹 (𝑥) is a response function which is expressed as

𝐹 (𝑥) =

{

1 if 𝑥 > 𝜙,
0 otherwise.

(5)

Conceptually, the random network can be envisioned as a tree
structure. The topmost level comprises a single node with a degree
of 𝑘, connected to 𝑘 neighbors at the subsequent level. Each of these
connected nodes, in turn, is linked to 𝑘−1 neighbors at the next lower
level, following a degree distribution denoted as 𝑝′𝑘 = 𝑘𝑝𝑘

⟨𝑘⟩ . To ascertain

the final fraction 𝜌 of active nodes, we assign levels to the tree, with the
bottom level labeled as 𝑛 = 0 and the top node situated at level 𝑛 → ∞.
Here, 𝑞𝑛 denotes the conditional probability of a node at level 𝑛 being
active, given that the node at level 𝑛 + 1 is inactive. Considering the
probability 𝑝′𝑘, the chosen node at level 𝑛 has 𝑘 neighbors: one being
its parent node at level 𝑛+2, and the remaining 𝑘−1 being its children
at level 𝑛. Consequently, the probability of having 𝑘𝑝 positive links can
be expressed as

(𝑘−1
𝑘𝑝

)

𝜂𝑘𝑝 (1 − 𝜂)𝑘−1−𝑘𝑝 . Furthermore, the probability of
having 𝑚𝑝 out of 𝑘𝑝 active nodes and 𝑚𝑛 out of 𝑘 − 1 − 𝑘𝑝 active nodes
can be computed as

(𝑘𝑝
𝑚𝑝

)

𝑞𝑚𝑝 (1− 𝑞)𝑘𝑝−𝑚𝑝 and
(𝑘−1−𝑘𝑝

𝑚𝑛

)

𝑞𝑚𝑛 (1− 𝑞)𝑘−1−𝑘𝑝−𝑚𝑛 ,
respectively. Thus the activation of the chosen node can unfold in
two scenarios: either it becomes a seed node, or it remains initially
3

inactive with a probability of 1 − 𝜌0 and becomes active due to the
influence of active neighbors. This derivation leads to the recursive
Eq. (3). Similarly, the probability governing the single node at the top
level can be expressed using Eq. (2).

3.2. The cascade condition

The cascade condition serves as a crucial determinant of the occur-
rence of global cascades within the network. Expressing the equation
𝐺(𝑞) as a polynomial of the form ∑

𝑙=0 𝐶𝑙𝑞𝑙, with coefficients denoted
as

𝐶𝑙 =
∞
∑

𝑘=𝑙+1

𝑘𝑝𝑘
⟨𝑘⟩

𝑘−1
∑

𝑘𝑝=0

(

𝑘 − 1
𝑘𝑝

)

𝜂𝑘𝑝 (1 − 𝜂)𝑘−1−𝑘𝑝

×
𝑙

∑

𝑐=0

(

𝑙
𝑐

) 𝑐
∑

𝑚𝑝=0

(

𝑘𝑝
𝑐

)(

𝑐
𝑚𝑝

)

(−1)𝑐+𝑚𝑝

×
𝑙−𝑐
∑

𝑚𝑛=0

(

𝑘 − 1 − 𝑘𝑝
𝑙 − 𝑐

)(

𝑙 − 𝑐
𝑚𝑛

)

(−1)𝑙−𝑐−𝑚𝑛𝐹 (
𝑚𝑝 + 𝛼𝑚𝑛

𝑘
).

(6)

We introduce the equation ℎ(𝑞) defined as

ℎ(𝑞) = 𝜌0 + (1 − 𝜌0)𝐺(𝑞) − 𝑞. (7)

Neglecting the higher-order term 𝑂(𝑞2), we approximate ℎ(𝑞) as

ℎ(𝑞) ≈ 𝜌0 + (1 − 𝜌0)(𝐶0 + 𝐶1𝑞) − 𝑞. (8)

Therefore, a global cascade occurs under the condition (1 − 𝜌0)𝐶1 >
1, as this ensures that 𝑞 increases with 𝑛, at least initially. Utilizing
𝑛
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Fig. 3. The figure illustrates cascade windows within the (𝜙, ⟨𝑘⟩) planes for different values of 𝛼, varying the fraction of positive links 𝜂, and using a seed size 𝜌0 = 10−3. The
etwork follows a Poisson degree distribution 𝑝𝑘 = 𝑒−⟨𝑘⟩⟨𝑘⟩𝑘

𝑘!
. Panels (A), (B), and (C) correspond to different values of 𝜂: (A) 𝜂 = 0.3, (B) 𝜂 = 0.5, and (C) 𝜂 = 0.8. The solid lines

elineate the boundary of the global cascade window, determined by Eq. (9).
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q. (6), we can derive the cascade condition
∞
∑

=1

𝑘(𝑘 − 1)𝑝𝑘
⟨𝑘⟩

[

𝜂𝐹
( 1
𝑘

)

+ (1 − 𝜂)𝐹
(𝛼
𝑘

)

− 𝐹 (0)
]

> 1
1 − 𝜌0

. (9)

Notably, when the fraction of positive links 𝜂 = 1 or the weighted
parameter 𝛼 = 1, the formula simplifies to the cascade condition
previously derived in [31] as
∞
∑

𝑘=1

𝑘(𝑘 − 1)𝑝𝑘
⟨𝑘⟩

[

𝐹
( 1
𝑘

)

− 𝐹 (0)
]

> 1
1 − 𝜌0

. (10)

3.3. The cascade window

In Fig. 2, the color-coded visualization across the (𝜙, ⟨𝑘⟩) param-
eter space in Panels (A,C) provides a profound understanding of the
information cascade size. The cascade condition, formulated in Eq. (9),
clearly outlines the boundary within which global cascades can emerge,
denoted by the solid blue line. Panel (B) highlights the significant influ-
ence of the average degree ⟨𝑘⟩ on the average cascade size 𝜌. For 𝛼 =
0.5, as ⟨𝑘⟩ increases, a second-order phase transition in 𝜌 is observed
upon surpassing a critical threshold ⟨𝑘⟩𝐼𝐼𝑐 . This transition signifies the
emergence of global cascades, followed by 𝜌 gradually approaching
1. However, beyond a subsequent critical point ⟨𝑘⟩𝐼𝑐 , indicative of an
even more densely connected network regime, a pronounced first-order
phase transition takes place. Here, 𝜌 undergoes a sudden drop to zero,
indicating the potential impediment of information cascades in overly
dense network environments. In contrast, for 𝛼 = −0.5 in Panel (D),
the dynamics of the cascade size 𝜌 exhibit a distinctly different pattern,
resembling a bell-shaped curve. Specifically, as ⟨𝑘⟩ increases, a second-
order phase transition occurs with a critical point at ⟨𝑘⟩𝐼𝐼𝑐2 . The average
cascade size 𝜌 gradually attains a peak value at approximately ⟨𝑘⟩ = 6.
Finally, another second-order phase transition occurs with a critical
point at ⟨𝑘⟩𝐼𝐼𝑐1 , where the value of 𝜌 decreases to zero.

In Fig. 3, variations in cascade windows within the (𝜙, ⟨𝑘⟩) planes
are displayed for different weighted parameters 𝛼. The panels illustrate
how increasing 𝛼 broadens the cascade window, as evident across the
different panels distinguished by varying 𝜂 values. It is notable that
when 𝛼 is set to −0.5 or 0, the cascade window remains identical. This
occurs because the term 𝐹

(

𝛼
𝑘

)

in Eq. (9) evaluates to zero for all 𝛼 ≤ 0,
effectively leading to no distinction in the conditions that determine the
global cascade window.

3.4. The complementary cascade size

The critical points 𝜌0,𝑐 and 𝑞𝑐 are determined by satisfying the
ollowing conditions

𝜕ℎ
𝜕𝑞 (𝜌0,𝑐 , 𝑞𝑐 ) = 0,

(11)
4

ℎ(𝜌0,𝑐 , 𝑞𝑐 ) = 0. d
The graphical solutions of Eq. (7) across varied values of 𝛼 within a
random network are presented in Fig. 4. The constants ⟨𝑘⟩ = 4, 𝜂 = 0.2,
and 𝜙 = 0.334 are maintained, while exploring different 𝜌0 values.

Fig. 4 depicts the solutions of ℎ(𝜌0, 𝑞) = 0 by varying the seed
ize 𝜌0 for 𝛼 = 0.5 and 𝛼 = 1, respectively. Panel (A) demonstrates
hat for a lower value of 𝛼, specifically 𝛼 = 0.5, the solution is
traightforward: regardless of the value of 𝜌0, only a single solution
s observed. Conversely, Panel (B) reveals a more intricate scenario for

higher value of 𝛼, such as 𝛼 = 1. Here, the behavior of the system
hanges significantly. For larger values of 𝜌0, the curve can become
angent to the horizontal axis with multiple solutions, indicating that
he system can undergo a phase transition. Specifically, a first-order
ercolation transition point is identified at 𝜌0,𝑐 ≈ 0.104. At this critical
oint, the parameter 𝑞 experiences a sudden transition from 𝑞𝑐1 to
𝑐2. This abrupt change characterizes a discontinuous transition in the
omplementary cascade size (𝜌−𝜌0)∕(1−𝜌0), marking a significant shift
n the system’s state.

Fig. 5 provides insights into the impact of the initial seed size 𝜌0 on
he complementary cascade size (𝜌−𝜌0)∕(1−𝜌0) across different parame-
ers. The analytical results derived from Eq. (2) are represented by lines,
hile simulation outcomes are depicted by data points. The alignment
etween analytical predictions and simulation results underscores the
odel’s accuracy in capturing information diffusion dynamics within

andom networks.
In Panel (A), for small values of 𝜂, the curve corresponding to
= 1 exhibits a first-order phase transition, evidenced by a sudden

ncrease in cascade size as 𝜌0 crosses a critical point. Conversely, curves
ssociated with lower 𝛼 values (e.g., 𝛼 = 0 or 𝛼 = 0.5) demonstrate
radual growth as 𝜌0 increases.

As 𝜂 increases, shown in Panel (B) and further intensified in Panel
C), the cascade speed escalates gradually. Consequently, curves associ-
ted with lower 𝛼 values can also manifest a first-order phase transition,
s observed in Panel (C) for 𝛼 = 0.

.5. The network structure

To explore how network structure influences information cascade
ynamics, we compare random graphs with Poisson degree distribu-
ion, given by 𝑝𝑘 = 𝑒−⟨𝑘⟩⟨𝑘⟩𝑘

𝑘! , and scale-free power-law degree distribu-
tion, 𝑝𝑘 ∝ 𝑘−3 [33,34]. Our findings in Fig. 6 reveal intriguing insights
into cascade dynamics within these networks.

Panel (A) demonstrates that when both the density of positive links
𝜂 and the decay factor 𝛼 are low (e.g., 𝜂 = 0.2 and 𝛼 = −0.5), random
etworks with Poisson degree distribution exhibit greater robustness
ompared to those with scale-free power-law degree distribution. This
s evidenced by smaller cascade sizes (yellow lines), attributed to the
omogeneous degree distribution supporting more uniform information
iffusion.
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e

Fig. 4. The graphical solutions of ℎ(𝜌0 , 𝑞) = 0 by varying the seed sizes 𝜌0 for different values of 𝛼, while maintaining constants ⟨𝑘⟩ = 4, 𝜂 = 0.2, and 𝜙 = 0.334. The network
mploys a Poisson degree distribution 𝑝𝑘 = 𝑒−⟨𝑘⟩⟨𝑘⟩𝑘

𝑘!
. Panels (A) and (B) depict the solutions corresponding to 𝛼 = 0.5 and 𝛼 = 1, respectively.
Fig. 5. The figure illustrates the complementary cascade size (𝜌 − 𝜌0)∕(1 − 𝜌0) as a function of 𝜌0 for various values of 𝛼. The network employs a Poisson degree distribution
𝑝𝑘 = 𝑒−⟨𝑘⟩⟨𝑘⟩𝑘

𝑘!
. The line denotes the analytical results, while the points correspond to the simulation outcomes. The simulation parameters are set as follows: 𝑁 = 105, 𝜙 = 0.334, and

⟨𝑘⟩ = 4 with (A) 𝜂 = 0.2; (B) 𝜂 = 0.5; (C) 𝜂 = 0.8. The results are averaged over 100 realizations.
In Panel (A), for higher values of 𝛼 (e.g., 𝛼 = 0.5), the robustness
of Poisson networks relative to scale-free power-law networks depends
on the seed size 𝜌0. Lower seed sizes (𝜌0 < 0.3) show smaller cascade
sizes in Poisson networks, indicating greater robustness (green lines).
Conversely, higher seed sizes (𝜌0 > 0.3) lead to larger cascade sizes, in-
dicating increased fragility compared to scale-free power-law networks
(green lines).

Panel (C) highlights that at a very high density of positive links (𝜂 =
0.8), Poisson networks consistently exhibit greater fragility compared to
scale-free power-law networks under higher values of 𝜌0. The homoge-
neous structure of Poisson networks facilitates rapid and widespread
cascades, making them more susceptible to large-scale information
diffusion. In contrast, the heterogeneous structure of scale-free power-
law networks, with hubs, localizes and contains information spread,
providing greater resilience against cascades (blue lines).

4. Conclusion

This study provides a general framework for exploring information
cascades in signed networks, incorporating both positive and nega-
tive connections to evaluate their effects on information diffusion.
Our findings indicate that negative links can considerably impede the
spread of information across networks. We observed that the cascade
5

window diminishes as the density of negative connections increases or
their influence becomes weaker. However, as 𝛼 decreases from 0 to
−∞, the cascade window reaches a minimum and remains unchanged.
Crucially, our model forecasts under positive 𝛼, second-order phase
transitions in cascade size with rising network connectivity (measured
by average degree), followed by first-order transitions that highlight
the difficulties in achieving global cascades in highly interconnected
networks. However, for negative 𝛼, the relationship between network
density and cascade size follows a bell-shaped curve, resulting in two
second-order phase transitions in both low and high average degree
scenarios. Furthermore, with fixed lower densities of positive links 𝜂,
and lower weighted parameter 𝛼, Poisson networks are consistently
more robust compared to scale-free power-law networks. However, this
trend reverses when both 𝛼 and initial seed size 𝜌0 are high. Conversely,
with a fixed higher density of positive links 𝜂, higher 𝜌0 makes Poisson
networks consistently more robust compared to scale-free power-law
networks, while lower 𝜌0 makes Poisson networks more fragile.

To further refine our model, several promising directions can be
pursued. One approach is to introduce variability in the threshold
parameter 𝜙 and the weighted parameter 𝛼 across different nodes
to capture individual differences in responsiveness and information
selection within the network. Another potential extension, inspired by
percolation theory, involves the selective removal of negative links.
This approach would simulate varying resistance to information spread

through negative connections, potentially leading to diverse cascade
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Fig. 6. Complementary cascade size (𝜌 − 𝜌0)∕(1 − 𝜌0) as a function of 𝜌0 for various values of 𝛼 = −1,−0.5, 0, 0.5, 1, represented by red, orange, yellow, green, and blue lines
espectively, within random networks characterized by Poisson degree distribution 𝑝𝑘 = 𝑒−⟨𝑘⟩⟨𝑘⟩𝑘

𝑘!
(dashed lines) and scale-free power-law degree distribution 𝑝𝑘 ∝ 𝑘−3 (solid lines).

Solid lines denote analytical results for scale-free power-law networks, while dashed lines correspond to analytical results for Poisson networks. Settings: 𝜙 = 0.334, ⟨𝑘⟩ = 10, with
(A) 𝜂 = 0.2; (B) 𝜂 = 0.5; (C) 𝜂 = 0.8. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
dynamics. These proposed modifications aim to deepen our understand-
ing of complex network behaviors and their impact on information
cascades.

The implications of our study are profound for both theoretical re-
search and practical applications. By integrating positive and negative
interactions within a unified model, we offer a realistic framework
for comprehending how information spreads in social networks. This
model provides valuable insights into the information cascade dynam-
ics, which are essential for developing strategies to manage information
dissemination in real-world contexts.

CRediT authorship contribution statement

Xingfu Ke: Writing – review & editing, Writing – original draft,
Visualization, Validation, Methodology. Youjin Wen: Visualization,
Validation, Methodology. Hao Yu: Writing – review & editing, Writing
– original draft, Validation, Methodology, Conceptualization. Fanyuan
Meng: Writing – review & editing, Writing – original draft, Validation,
Supervision, Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

Our work is supported by the National Natural Science Foundation
of China (Grant No. 52374013).

References

[1] Haz Lidice, Acaro Ximena, Guzman Carlos Julio, Espin Luis, Molina Maria Fer-
nanda. Digital platforms as means of social interaction: threats and opportunities
in online affective relationships. In: Digital science. Springer; 2019, p. 417–25.

[2] Joo Tang-Mui, Teng Chan-Eang. Impacts of social media (facebook) on human
communication and relationships: A view on behavioral change and social unity.
Int J Knowl Content Dev Technol 2017;7(4):27–50.

[3] Tang Mui Joo, Chan Eang Teng. The impact of online social networking
(social media) on interpersonal communication and relationships. In: Intelligent
computing: proceedings of the 2021 computing conference, volume 3. Springer;
2021, p. 624–40.
6

[4] Bakshy E, Rosenn Itamar, Marlow Cameron A, Adamic Lada A. The role of
social networks in information diffusion. In: Proceedings of the 21st international
conference on world wide web. 2012.

[5] Guo Yuning, Cao Jianxiang, Lin Weiguo. Social network influence analy-
sis. In: 2019 6th international conference on Dependable Systems and Their
Applications. DSA, 2020, p. 517–8.

[6] Lerman Kristina, Ghosh Rumi. Information contagion: An empirical study of
the spread of news on digg and twitter social networks. In: Proceedings of the
international AAAI conference on web and social media. Vol. 4, 2010, p. 90–7.

[7] Dong Chen, Xu Guiqiong, Yang Pingle, Meng Lei. TSIFIM: A three-stage iterative
framework for influence maximization in complex networks. Expert Syst Appl
2023;212:118702.

[8] Zhao Yunwei, Wang Can, Chi Chi-Hung, Lam Kwok-Yan, Wang Sen. A compar-
ative study of transactional and semantic approaches for predicting cascades on
Twitter.. In: IJCAI. 2018, p. 1212–8.

[9] Liu Yun, Bao Zemin, Zhang Zhenjiang, Tang Di, Xiong Fei. Information cas-
cades prediction with attention neural network. Hum-Cent Comput Inf Sci
2020;10:1–16.

[10] Chen Zhihao, Wei Jingjing, Liang Shaobin, Cai Tiecheng, Liao Xiangwen.
Information cascades prediction with graph attention. Front Phys 2021;9:739202.

[11] Cinelli Matteo, De Francisci Morales Gianmarco, Galeazzi Alessandro, Quattro-
ciocchi Walter, Starnini Michele. The echo chamber effect on social media. Proc
Natl Acad Sci 2021;118(9):e2023301118.

[12] Baumann Fabian, Lorenz-Spreen Philipp, Sokolov Igor M, Starnini Michele.
Modeling echo chambers and polarization dynamics in social networks. Phys
Rev Lett 2020;124(4):048301.

[13] Yang Pingle, Meng Fanyuan, Zhao Laijun, Zhou Lixin. AOGC: An improved
gravity centrality based on an adaptive truncation radius and omni-channel
paths for identifying key nodes in complex networks. Chaos Solitons Fractals
2023;166:112974.

[14] Buechel Berno, Klößner Stefan, Meng Fanyuan, Nassar Anis. Misinformation due
to asymmetric information sharing. J Econom Dynam Control 2023;150:104641.

[15] Acemoglu Daron, Ozdaglar Asuman, ParandehGheibi Ali. Spread of
(mis)information in social networks. Games Econom Behav 2010;70(2):194–227.

[16] Vosoughi Soroush, Roy Deb, Aral Sinan. The spread of true and false news online.
Science 2018;359(6380):1146–51.

[17] Yu Hao, Xue Bin, Zhang Jianlin, Liu Run-Ran, Liu Yu, Meng Fanyuan. Opinion
cascade under perception bias in social networks. Chaos 2023;33(11).

[18] Buechel Berno, Hellmann Tim, Klößner Stefan. Opinion dynamics and wisdom
under conformity. J Econom Dynam Control 2015;52:240–57.

[19] Mao Yanbing, Akyol Emrah, Hovakimyan Naira. Impact of confirmation bias on
competitive information spread in social networks. IEEE Trans Control Netw Syst
2021;8(2):816–27.

[20] Liu Quan-Hui, Lü Feng-Mao, Zhang Qian, Tang Ming, Zhou Tao. Impacts of
opinion leaders on social contagions. Chaos 2018;28(5).

[21] Unicomb Samuel, Iñiguez Gerardo, Karsai Márton. Threshold driven contagion
on weighted networks. Sci Rep 2018;8(1):3094.

[22] Li Xiaolin, Wang Peng, Xu Xin-Jian, Xiao Gaoxi. Universal behavior of the
linear threshold model on weighted networks. J Parallel Distrib Comput
2019;123:223–9.

[23] Labianca G, Brass Daniel J. Exploring the social ledger: Negative relationships
and negative asymmetry in social networks in organizations. Acad Manag Rev
2006;31:596–614.

[24] Meng Fanyuan, Medo Matúš, Buechel Berno. Whom to trust in a signed network?
Optimal solution and two heuristic rules. Inform Sci 2022;606:742–62.

http://refhub.elsevier.com/S0960-0779(24)00838-5/sb1
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb1
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb1
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb1
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb1
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb2
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb2
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb2
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb2
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb2
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb3
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb3
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb3
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb3
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb3
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb3
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb3
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb4
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb4
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb4
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb4
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb4
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb5
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb5
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb5
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb5
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb5
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb6
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb6
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb6
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb6
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb6
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb7
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb7
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb7
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb7
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb7
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb8
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb8
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb8
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb8
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb8
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb9
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb9
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb9
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb9
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb9
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb10
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb10
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb10
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb11
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb11
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb11
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb11
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb11
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb12
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb12
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb12
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb12
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb12
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb13
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb13
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb13
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb13
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb13
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb13
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb13
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb14
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb14
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb14
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb15
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb15
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb15
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb16
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb16
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb16
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb17
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb17
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb17
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb18
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb18
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb18
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb19
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb19
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb19
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb19
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb19
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb20
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb20
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb20
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb21
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb21
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb21
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb22
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb22
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb22
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb22
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb22
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb23
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb23
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb23
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb23
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb23
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb24
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb24
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb24


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 186 (2024) 115286X. Ke et al.
[25] Easley David, Kleinberg Jon. Positive and negative relationships. In: Networks,
Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge
University Press; 2010.

[26] Leskovec Jure, Huttenlocher Daniel, Kleinberg Jon. Signed networks in social
media. In: Proceedings of the SIGCHI conference on human factors in computing
systems. 2010, p. 1361–70.

[27] He Xiaochen, Du Haifeng, Feldman M, Li Guangyu. Information diffusion in
signed networks. PLoS One 2019;14.

[28] Qu Cunquan, Bi Jialin, Wang Guanghui. Personalized information diffusion in
signed social networks. J Phys: Complex 2021;2(2):025002.

[29] Hosseini-Pozveh Maryam, Zamanifar Kamran, Naghsh-Nilchi Ahmad Reza. As-
sessing information diffusion models for influence maximization in signed social
networks. Expert Syst Appl 2019;119:476–90.
7

[30] Watts Duncan J. A simple model of global cascades on random networks. Proc
Natl Acad Sci 2002;99(9):5766–71.

[31] Gleeson James P, Cahalane Diarmuid J. Seed size strongly affects cascades on
random networks. Phys Rev E 2007;75(5):056103.

[32] Lee Kyu-Min, Lee Sungmin, Min Byungjoon, Goh K-I. Threshold cascade dynamics
on signed random networks. Chaos Solitons Fractals 2023;168:113118.

[33] Barabási Albert-László, Albert Réka. Emergence of scaling in random networks.
Science 1999;286(5439):509–12.

[34] Barabási Albert-László, Albert Réka, Jeong Hawoong. Mean-field theory for
scale-free random networks. Phys A 1999;272(1–2):173–87.

http://refhub.elsevier.com/S0960-0779(24)00838-5/sb25
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb25
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb25
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb25
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb25
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb26
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb26
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb26
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb26
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb26
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb27
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb27
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb27
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb28
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb28
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb28
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb29
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb29
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb29
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb29
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb29
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb30
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb30
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb30
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb31
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb31
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb31
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb32
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb32
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb32
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb33
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb33
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb33
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb34
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb34
http://refhub.elsevier.com/S0960-0779(24)00838-5/sb34

	A simple model of global cascades in signed networks
	Introduction
	Model
	Results
	The Cascade Size
	The Cascade Condition
	The Cascade Window
	The Complementary Cascade Size
	The Network Structure

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


