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ARTICLE INFO ABSTRACT

Keywords: The functionality of an entity frequently necessitates the support of a group situated in another layer of the
Higher-order system. To unravel the profound impact of such group support on a system’s resilience against cascading
Hypergraph failures, we devise a framework comprising a double-layer interdependent hypergraph system, wherein nodes

Cascading failure

a . in one layer are capable of receiving support via hyperedges in another layer. Our central hypothesis posits
TOup support

that the failure may transcend to another layer when all support groups of each dependent node fail, thereby
initiating a potentially iterative cascade across layers. Through rigorous analytical methods, we derive the
critical threshold for the initial node survival probability that marks the second-order phase transition point. A
notable finding is that as the proportion of dependent nodes increases, the dynamics of the double-layer system,
characterized by Poisson hyperdegree distributions, transition from exhibiting a second-order phase transition
to a first-order phase transition. In summary, our research highlights the critical role of group support mecha-
nisms and intricate network topologies in influencing the resilience of interconnected systems with higher-order
interactions against cascading failures, providing valuable insights for designing or optimizing systems to

mitigate widespread disruptions and ensure sustained functionality and stability under adverse conditions.

1. Introduction

Cascading failures, characterized by the propagation of disrup-
tions across interconnected systems, pose significant threats to various
societal structures, including power grids [1-4], transportation net-
works [5-8], and communication systems [9-11]. These failures often
originate from the malfunction of a single or a small number of entities,
ultimately leading to widespread and, at times, catastrophic collapses of
entire systems. Such events can disrupt critical services, cause economic
losses, and even endanger human lives. Consequently, the study of
cascading failures has garnered significant attention from researchers
across diverse disciplines, such as physics, mathematics, computer
science, and social science.

One of the fundamental approaches to studying cascading failures is
through the lens of network science [12,13]. Networks provide a pow-
erful framework for modeling and analyzing the structural properties
and relationships between entities within complex systems. By repre-
senting entities as nodes and their interactions as edges, networks allow
researchers to gain insights into how disruptions propagate through a
system and ultimately lead to cascading failures. This network-based
representation has proven to be instrumental in unraveling the underly-
ing mechanisms that govern the resilience and vulnerability of various
systems.

Furthermore, many real-world systems consist of multiple interde-
pendent layers, where nodes and edges in one layer can depend on
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those in another [14-16]. This interdependence further complicates
the analysis of cascading failures, as disruptions can propagate across
layers, triggering failures in multiple systems simultaneously [17-19].
Furthermore, numerous researchers extended the field by introducing
link direction [20], correlated properties [21,22], redundant dependen-
cies [23], dependence strength [24-26], multiple support [27-29] to
investigate the resilience of multilayer networks.

However, traditional network models that focus primarily on pair-
wise interactions between nodes have limitations in accurately repre-
senting real-world systems that exhibit higher-order interactions [30—
32]. Higher-order interactions involve simultaneous engagements
among groups comprising more than two nodes, which are prevalent
in many real-world systems [33,34]. Notably, hypergraphs provide a
more comprehensive framework to model various complex systems
for modeling complex systems, capturing the richness and diversity of
higher-order interactions due to the fact that hyperedges can connect
an arbitrary number of nodes [35,36].

Despite the growing acknowledgment of the importance of higher-
order interactions and interdependencies in complex systems, research
on cascading failures in interdependent hypergraphs remains relatively
limited [37-40]. Notably, most existing studies focus primarily on the
dependencies between nodes across different layers, often overlooking
the potential for nodes to also depend on various hyperedges (support
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groups) in another layer. In many systems, individual nodes rely on
specific groups to access vital resources or information. In financial
networks, companies often rely on industry associations to manage
market risks collectively. For example, a group of banks may depend on
an industry association to monitor market fluctuations and coordinate
risk management strategies. If the industry association fails (e.g., due
to regulatory issues), the banks may lose access to critical information
and support, leading to individual failures that can cascade across the
financial network. In supply chains, individual companies may depend
on supplier groups for raw materials and components. For example, an
automobile manufacturer may rely on a group of suppliers for parts
and components. If a supplier group fails (e.g., due to a natural disaster
or economic downturn), the manufacturer may experience delays and
production disruptions, leading to cascading failures across the supply
chain. In transportation networks, individual logistics teams may de-
pend on coordination groups for scheduling and resource allocation.
For example, a shipping company may rely on a logistics team to
coordinate shipments and manage resources. If the logistics team fails
(e.g., due to a lack of coordination or resource shortages), the shipping
company may experience delays and operational disruptions, leading
to cascading failures across the transportation network.

To address this gap, we propose a simplified framework to study
cascading failures in interdependent hypergraphs. Our model comprises
two mutually dependent hypergraphs, incorporating the concept of
support groups where nodes in one hypergraph rely on hyperedges in
the other for functionality. By capturing both higher-order interactions
and interdependencies between nodes and hyperedges across layers,
our model offers a more accurate and comprehensive representation of
real-world complex systems, enabling a deeper investigation into how
failures propagate across the double-layer system.

2. The model

We construct a double-layer interdependent hypergraph system,
denoted as A and B, comprising N, and N nodes, and M, and
M g hyperedges, respectively. Each node’s hyperdegree, represented by
k, indicates the number of hyperedges it is part of. The hyperdegree
distributions for layers A and B are denoted as P,(k) and Pg(k).
Similarly, the cardinality m of a hyperedge, which is the count of nodes
it encompasses, adheres to distributions Q 4(m) and Q z(m).

Our model integrates interdependencies where nodes in one layer
rely on support hyperedges from the other. Specifically, a node in layer
A is chosen with probability ¢, to depend on support hyperedges from
layer B, and similarly for nodes in layer B with probability gz. The
support degree of each dependent node (i.e., the number of support
hyperedges), denoted as &, follows distributions P,(k) and Py(k).

The cascading dynamics commence with the removal of nodes with
probabilities 1 — r, and 1 — rgz in each respective layer, where r
represents the initial node survival probability. Subsequently, a node
remains functional only if: (i) it is connected to at least one functional
support hyperedge in the other layer; and (ii) it is part of the Giant
Connected Component (GCC) within its own layer, ensuring internal
connectivity. This cascading failure process, triggered by the initial
node removals, iterates between the two layers until no additional
nodes fail. The size of the final GCC for layers A and B is denoted as .S,
and Sp, respectively. In the following sections, we exclusively analyze
symmetric cases, where the resilience of the double-layer system can
be assessed by the size S of the GCC in either layer, i.e., S, = Sz = S.

The cascading failure process within the model can be illustrated in
Fig. 1. Initially, nodes 6 and 7 in layer A, along with node 3 in layer B,
are removed. At stage 1 of layer A, the hyperedge e; collapses, which
consequently causes the small component consisting of hyperedges e,
and es to collapse as it detaches from the GCC. At stage 1 in layer
B, node 4 will fail due to the collapse of its support hyperedges e;
and e, in layer A, and node 8 will fail due to the collapse of its only
support hyperedge e, in layer A as well. Furthermore, the collapse of
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hyperedge ¢, in layer B, leading to the collapse of the small component
that comprises hyperedge e, as it is disconnected from the GCC of layer
B. Finally, node 3 in layer A fails due to the collapse of its support
hyperedges e, and e,. The cascading failure process ceases as no further
nodes fail. The final GCC is composed of the component of nodes
{1,2,4,5,11} in layer A, and the component of nodes {5,6,7,9,10},
respectively.

3. Key results

To characterize the structures and interdependencies of both layers,
we introduce several generating functions. These functions encapsu-
late essential information regarding the distributions of hyperdegrees,
cardinalities within each layer, and support degrees across layers. The
generating functions for the hyperdegree distribution are defined as

Gl = Y PAX",
e~ (€]

GE(x)= Y PP(hx*.
k=0

The generating functions for the excess hyperdegree distribution are
defined as

kPA(k
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The generating functions for the support degree distribution are defined
as
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The generating functions for the cardinality distribution are defined as
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The generating functions for the excess cardinality distribution are
defined as
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As illustrated in Fig. 1, the cascading failure process unfolds in
discrete iterations, progressing from stage n = 1 to n = oo within both
layers.

We denote the probabilities that hyperedges are functional in layers
A and B at stage n as T and T2, respectively. Consequently, the
probability that a dependent node in layer A(B) at stage n lacks
functional support hyperedges in layer B(A) is given by

A—z;"oﬁf‘(k)(l—TB ) =G -TE),
nB Zk OPB(k)( ) _GB (I_TnA—1)'

The fraction of nodes in layer A(B) which remain functional at stage
n after applying condition (i) is derived as

{pfer(l_unr/})’ (7)

pp=r?(1-qful).

(6)
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Fig. 1. Illustration of a cascading failure process within double-layer hypergraphs A and B. Arrow lines signify the interdependencies established between dependent nodes in one
layer and their respective support hyperedges in the other layer. Blue nodes indicate functional nodes, contrasting with red nodes, which signify failed nodes. Hyperedges depicted
in gray symbolize those that have collapsed due to their disconnection from the Giant Connected Component (GCC), whereas hyperedges marked with red crosses represent failures
directly attributed to the collapse of their constituent nodes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

Subsequently, the probabilities T4 and T2 are expressed as
1= 3 o' Y (") (=16 (1= b (=22
m=0 Jj=0

m (8)
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where f4 or fE represents the probability that a randomly selected
hyperedge, reached through a random node, can connect to the GCC
of each layer (condition (ii)). First, choose a random hyperedge with
cardinality m according to the distribution Q4 (m) or Q®(m). Then, ('J")
represents the scenario where there are j failed nodes among the m
nodes in the selected hyperedge. The term 1 — [G{, (1 - f*)1"~ or
1 - [Gf1 (1-fB)"J denotes the probability that within a random
hyperedge of cardinality m, at least one node out of m — j functional
nodes along the remaining hyperedges can connect to the GCC.

Analogously, we can derive /4 and f? as
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Therefore, the fractions S;‘ and Sf of nodes in the GCC can be
obtained by

S =ppll =G = DL 10
SE=pPl1-GE1 - 1Bl
Upon termination of the cascading failure process, p4, p?, T2, T2,

JA, fB, 54, and S2 all converge to their steady values p4 , p5 , T4

TE
SR
fA, rB, s4, and S3, respectively.

Based on the generating functions of Egs. (4) and (5), the steady
values of T4 from Eq. (8) and fZ from Eq. (9) can be simplified
into

{ oi-aul-sa o) o
fo=1=Gn (1=pG + P0G (1= 12))-
Similarly, we can obtain
{ TS=1-Gr (1-pZ +p2GH (1-12)). a2
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Furthermore, the final fractions S:; and S£ of nodes in the GCC can
be expressed as

{ S4 =pAll =G - O,

13
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4. The symmetric case

We begin by assuming that both layers follow Poisson cardinal-
ity distributions, i.e., e~ (m)™/m!, which simplifies the analysis of
Egs. (11) and (12) that are typically solved numerically.

Consequently, we have

A _ A
GA () = G4 (), 9
G2 (x) =GB (x).
From Egs. (11) and (12), we derive

f6=T5
{fB =73 a4

This simplifies Egs. (11) and (12) to
{ S zl_Grﬁo(l _p:o+pvoG/?1 (1-r2)).

16)
rE=1-G5 (1-pE +p5GE (1-12)).
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Fig. 2. The depiction of the collapse pattern within an interdependent hypergraph system is presented. The support degree, cardinality, and hyperdegree are each modeled through
a Poisson distribution characterized by (k) =4, (m) =5, and (k) = 4, respectively. (a) illustrates the fraction S of the GCC as a function of r for different values of ¢. (b) identifies

the critical points corresponding to second-order and first-order phase transitions.

Moreover, if both hypergraph layers exhibit identical cardinality,
hyperdegree, and support degree distributions, we obtain

GA () =GB (x) = G,9(x),
Gi\(x) = GB (x) = Gio(x), 17)
G () = G2 () = Gip(x).

Assuming identical parameter settings, i.e., g, = qg =¢q, 4 =r8 =r,
we find

fA=rE=r. 18)
Thus, Eq. (16) simplifies to
f=1—Gmo<1—r[1—qako(l—f)][l—le(l—f)]). 19

Additionally, the size of GCC, S4 = S8 = §, is given by
S = rll = qGyo(1 = NI = Gyo(1 = 1)), (20)

To solve the critical point r!! for the second-order phase transition,
i.e., a scenario where the order parameter .S (the size of the GCC)
changes continuously as a function of the control parameter r (the
initial survival probability), we define

h(r, f)=1=Go (N -/, (2D
with
W) =1=rl1 = qGo(1 = PIL = Gy (1 = f)]. (22)
Since r!! satisfies 0,h(r!!,0) = 0, we derive
G (0)y'(0)=1=0, (23
with
{y«)) =1, o0
y'(0) =G (D1 - g).

Given that both layers follow Poisson cardinality and hyperdegree

distributions, we obtain

11 1
r s — (25)
¢ (m)(1 = g)k)

Furthermore, the fraction ¢ of dependent nodes has a great impact
on the collapse pattern of the system. As illustrated in Fig. 2, a pivotal
transition in the system’s collapse pattern is triggered as the value
of g exceeds the critical point g.. This transition, from a smooth,

second-order phase transition to an abrupt, first-order phase transition,
signifies a profound shift in the system’s resilience.

Since at the critical point ¢,, the condition for second-order and
first-order phase transition are met, we must have the equation
a§ h(r!’,0) = 0 which yields

Gf,:o(y(()))(y'(o))2 + G (3(0)y"(0) =0, (26)
with

¥(0) =1,

Y(©0)=—r1- 4G, (1), 27)

¥'(0) = =r!" (24.G, (DG}, (1D = (1 = 4G, (D).

If hyperdegree and support degree also follow Poisson distributions
for both layers, we can obtain

1
(k)+1

In Fig. 2(a), the curve labeled by g = 0.3846 = ¢, delineates the
boundary between second-order and first-order phase transition. For
g = 0.3 < g,, the system undergoes a second-order phase transition at
the critical point r!’ ~ 0.07143 (verified by Fig. 3(a)). Conversely, when
q = 0.5 > g, the collapse pattern of the system is an abrupt first-order
phase transition at the critical point ’1’- ~ 0.09553 (verified by Fig. 3(b)).

Moreover, Eq. (28) reveals a profound relationship: the point g, is
inversely proportional to the average support degree (k) and directly
proportional to the average hyperdegree (k). This relationship high-
lights a crucial principle: an augmentation in the density of support
hyperedges within the system triggers a shift towards a lower transition
threshold separating second-order from first-order phase transitions.
Specifically, in Fig. 4, when (k) = 5, ¢ = 0.4 < g, results in the system
undergoing a second-order phase transition.

However, as (k) increases to 10, ¢ = 0.4 > g, occurs, causing the
system to exhibit first-order phase transition. It is important to note
that, a higher value of (k) makes the system more fragile, the potential
for abrupt collapse necessitates vigilance.

5. Conclusion

Given the ubiquitous interdependence among diverse infrastruc-
tures, investigating cascading failures within interdependent systems is
of critical importance. Our research endeavors to bridge a conspicuous
gap in the existing literature by delving into cascading failures within
interdependent hypergraphs with group support mechanisms. By inte-
grating higher-order interactions and interdependencies between nodes
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Fig. 3. Graphical solution of Eq. (21). The support degree and cardinality are modeled by a Poisson distribution with (k) =4 and (m) = 5, respectively. The panels illustrate the
scenario where the hyperdegree adheres to a Poisson distribution with (k) =4 for ¢ = 0.3 < g, = 0.3846 and ¢ = 0.5 > ¢, = 0.3846, respectively.
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Fig. 4. The fraction S of GCC as a function of r for varying (k). The hyperdegree and
cardinality are modeled by a Poisson distribution with (k) = 4 and (m) = 4, respectively.
The lines denote theoretical predictions, while the points represent simulation results
obtained with N = 10* nodes and M = 10* hyperedges.

and hyperedges across multiple layers, our model emerges as a robust
framework for dissecting the intricate mechanisms that underpin the
resilience of complex systems against cascading failures.

Our findings provide several profound insights into the resilience of
interdependent hypergraph systems. We establish a critical threshold
for the initial node survival probability, a boundary that demarcates
the second-order phase transition within the system’s dynamics. Fur-
thermore, we deduce the critical fraction of dependent nodes, a pivotal
indicator of the transition between second-order and first-order phase
transitions. This critical point is intricately tied to the average support
degree and the average hyperdegree, offering a nuanced understanding
of system behavior.

Despite the valuable insights our model offers into cascading fail-
ures within interdependent hypergraphs, several avenues for future
research remain uncharted. For instance, the introduction of intra-
hyperedge dependencies could be explored, where the failure of a node
might result in the collapse of the entire hyperedge it is embedded
within. Additionally, our current model confines itself to two interde-
pendent layers; extending this framework to multi-layer systems could
unveil more complex patterns of failure propagation. Moreover, while
our focus has been on the impact of hyperdegree and support degree
distributions, other structural attributes, such as clustering coefficients
and community structures, may also wield significant influence on the
resilience of interdependent hypergraphs.

In summary, our research underscores the pivotal role of group
support mechanisms and intricate network topologies in determining
the resilience of interconnected systems against cascading failures.
By constructing a double-layer interdependent hypergraph system, we
have gained profound insights into how failures propagate across lay-
ers and culminate in system-wide collapses, which can offer valuable
guidance for the design and resilience optimization of complex systems.
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